skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nordman, Jared T."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Successful duplication of the genome requires the accurate replication of billions of base pairs of DNA within a relatively short time frame. Failure to accurately replicate the genome results in genomic instability and a host of diseases. To faithfully and rapidly replicate the genome, DNA replication must be tightly regulated and coordinated with many other nuclear processes. These regulations, however, must also be flexible as replication kinetics can change through development and differentiation. Exactly how DNA replication is regulated and how this regulation changes through development is an active field of research. One aspect of genome duplication where much remains to be discovered is replication timing (RT), which dictates when each segment of the genome is replicated during S phase. All organisms display some level of RT, yet the precise mechanisms that govern RT remain are not fully understood. The study of Rif1, a protein that actively regulates RT from yeast to humans, provides a key to unlock the underlying molecular mechanisms controlling RT. The paradigm for Rif1 function is to delay helicase activation within certain regions of the genome, causing these regions to replicate late in S phase. Many questions, however, remain about the intricacies of Rif1 function. Here, we review the current models for the activity of Rif1 with the goal of trying to understand how Rif1 functions to establish the RT program. 
    more » « less
  2. null (Ed.)
    Abstract Replication initiation in eukaryotic cells occurs asynchronously throughout S phase, yielding early- and late-replicating regions of the genome, a process known as replication timing (RT). RT changes during development to ensure accurate genome duplication and maintain genome stability. To understand the relative contributions that cell lineage, cell cycle, and replication initiation regulators have on RT, we utilized the powerful developmental systems available in Drosophila melanogaster. We generated and compared RT profiles from mitotic cells of different tissues and from mitotic and endocycling cells of the same tissue. Our results demonstrate that cell lineage has the largest effect on RT, whereas switching from a mitotic to an endoreplicative cell cycle has little to no effect on RT. Additionally, we demonstrate that the RT differences we observed in all cases are largely independent of transcriptional differences. We also employed a genetic approach in these same cell types to understand the relative contribution the eukaryotic RT control factor, Rif1, has on RT control. Our results demonstrate that Rif1 can function in a tissue-specific manner to control RT. Importantly, the Protein Phosphatase 1 (PP1) binding motif of Rif1 is essential for Rif1 to regulate RT. Together, our data support a model in which the RT program is primarily driven by cell lineage and is further refined by Rif1/PP1 to ultimately generate tissue-specific RT programs. 
    more » « less